Dinner (Summer School)
The summer school dinner will be held on Thursday May 21 at 7PM in Restaurant Pompier (Albertinkatu 29).You can check the location from the map below:
You can check the location from the map below:
Gitta Kutyniok from TU Berlin is an expert on "sparsity-promoting" reconstruction methods. Inverse problems are about recovering objects based on measurement data which is insufficient. The data needs to be complemented with extra information about the object, such as sparsity. Sparsity means representing the object using building blocks specifically chosen so that only very few of them are needed. Professor Kutyniok often uses "shearlets" for representing images. Shearlets are versatile building blocks adapting to image details of any scale and representing edges with a variety of orientations.
Peter Markowich from KAUST is an expert of partial differential equations which arise from systems depending on many variables and involving change. Due to the generality of mathematics, such models apply to wildly different areas of application.
Peijun Li from Purdue University studies direct and inverse scattering problems. One of the central contributions in his work is the design of imaging methods accepting realistic near-field measurements (as opposed to mathematically ideal far-field patterns). In the picture is shown reconstructions of a two-dimensional shape. Here the unknown shape is probed with acoustic waves send from different directions. Various datasets are considered with limited angles of view. Observe that the "dark side" of the shape is more difficult to recover. This work is joint between Peijun Li and Yuliang Wang.
Hongyu Liu from Hong Kong Baptist University knows how to recover objects from remote measurements. Below is an example of sending elastic vibrations through an unknown body, and recovering inhomogeneities (red) inside. This 2013 result is a joint work between four authors: Guanghui Hu, Jingzhi Li, Hongyu Liu and Hongpeng Sun.
At AIP, Professor Liu will explain how to hide objects from remote sensing. Such cloaking techniques are already used widely in fiction: think Harry Potter and his invisibility cloak.
Xiaoqun Zhang from Shanghai Jiao Tong University is an expert in inverse problems related to image processing. Here is an example of her work (this one done jointly with Tony Chan). On the left is the original "Barbara" image. Second image from left shows many missing pixels that should be filled back in using so-called "inpainting." Third image from left shows the result of a standard baseline technique, whereas the rightmost picture shows the excellent inpainting result using a nonlocal method developed by Zhang & Chan in 2010.
Prof. Schuster's plenary talk at AIP will be about vector tomography, which allows new imaging techniques in the fields of medicine, industry, oceanography, plasma physics, polarization tomography and electron microscopy.
In this work, electrical voltage-to-current measurements are preformed on the boundary of a physical body. The resulting currents flowing inside the body produce heat. The surface of the body is covered with heat flow sensors (interlaced with electrodes used for electrical measurements), providing extra information. Now the electrical and thermal measurements can be combined to yield improved information about the internal structure of the body.
Takashi Kako from University of Electro-Communications, Chofu-Tokyo, Japan, is an expert on resonances, and he will talk about their role in the formation of vowels in human speech. The related inverse problem is quite tricky: given a recording of a vowel sound, recover the shape of the vocal tract and the excitation signal arising from the vocal folds flapping against each other.
Pictured are simplified vocal tract models for the five Japanese vowels: /a/, /i/, /u/, /e/, /o/.
Eero Saksman, University of Helsinki: Adaptive Markov chain Monte Carlo (MCMC) methods (joint with Johanna Tamminen and Heikki Haario). In Bayesian inversion, one often needs to compute high dimensional integrals (posterior mean). Due to the "curse of dimensionality" it is not a good idea to use a quadrature method.
Instead, MCMC shoots plenty of points in the space, distributed according to the posterior probability. The average of the points is close to the integral. Now if the posterior probability has a weird shape, regular MCMC may not visit all corners of positive probability. Adaptive MCMC monitors the chain and modifies the search strategy on the fly, guiding the process to all relevant areas.